Molecular motors: Kinesin’s dynamically dockable neck
نویسندگان
چکیده
منابع مشابه
Molecular motors: Kinesin’s dynamically dockable neck
Kinesin is a molecular walking machine with two identical motor heads connected to a coiled-coil tail. Details of the coordination mechanism, which causes kinesin to walk directionally, and the tracking mechanism, which guides each detaching head to its next site on the microtubule, are beginning to emerge.
متن کاملNucleotide switches in molecular motors: structural analysis of kinesins and myosins.
Recent breakthroughs in the structural biology of cytoskeletal motor proteins show that two distinct families of motors--kinesins and myosins - use a similar mechanism of conformational switching for converting small structural changes in their nucleotide-binding sites into larger movements to provide force generation and motion. This mechanism is found to be similar to that employed by G prote...
متن کاملCytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins.
Cytoskeletal motor proteins are ATPases that use the energy released from ATP hydrolysis to move along the cytoskeletal elements of microtubules and actin microfilaments. Found among all eukaryotic organisms, kinesins are microtubule-based motor proteins with a conserved kinesin motor domain, and myosins are actin microfilament-based motor proteins with a conserved myosin motor domain. Cytoskel...
متن کاملMolecular motors
The " Molecular Motors " Minisymposium focused mainly on the microtubule-based motors kinesin and dynein and a class V myosin. A common feature of all these motors is that they move processively on their track, meaning that the motor can take multiple steps without dissociating. A common theme of the Minisymposium was motor function in a complex intracellular environment. Kathy Trybus (Universi...
متن کاملMolecular Motors
Perhaps the most fascinating proteins that associate with the cytoskeleton are the molecular motors called motor proteins. These remarkable proteins bind to a polarized cytoskeletal filament and use the energy derived from repeated cycles of ATP hydrolysis to move steadily along it. Dozens of different motor proteins coexist in every eucaryotic cell. They differ in the type of filament they bin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Biology
سال: 2000
ISSN: 0960-9822
DOI: 10.1016/s0960-9822(00)00309-2